

[2012]

| Year  | Questions | Marks |
|-------|-----------|-------|
| 2012  | 20        | 20    |
| 2013  | 15        | 15    |
| 2014  | 20        | 20    |
| 2015  | 20        | 20    |
| 2016  | 20        | 20    |
| Total | 95        | 95    |

1. The expression  $2x^3 + ax^2 + bx + 3$ , where a and b are constants, has a factor of x - 1 and leaves a remainder of 15 when divided by x + 2. Find the value of a and b respectively.

Answer: B Solution: Given,  $p(x) = 2x^3 + ax^2 + bx + 3$ G (x) = x - 1 H (x) = x + 2 Now, G (1) a + b = -5 ... (i) H (-2) 2a - b = 14 ... (ii) Upon solving (i) & (ii), a = 3; b = -8.

2. In the given figure, AOB is a straight line and  $\angle AOX_3 = 57^0$ ,  $\angle X_1OX_4 = 97^0$ ,  $\angle X_3OB = 123^0$  and  $\angle X_4OB = 68^0$ , Find  $\angle AOX_1$ .



(D) 15<sup>0</sup>

### Answer: A

**Solution:** AOX3 = 57, X1OX4 = 97, X3OB = 123, X4OB = 68 (Given) AOX1 = X1OX4 - AOX3 = 97-57 = 40

(C) 25<sup>0</sup>



#### 4. Which of the following statements is INCORRECT?

- (A) There can be a real number which is both rational and irrational.
- (B) The sum of any two irrational numbers is not always irrational.
- (C) For any Positive integers x and y,  $x < y \Rightarrow x^2 < y^2$
- (D) Every integer is a rational number.

### Answer: A

**Solution:** No, it's either rational or irrational but not both. A rational number can be expressed as the ratio of two Integers an irrational number is one that cannot be expressed as the ratio of two integers.

[2015]

Next, Gurukul

| 5. The     | factors of $8a^3 + b^3 - 6ab$<br>(A) (2a + b - 1) (4a <sup>2</sup> +<br>(C) (2a + b + 1) (4a <sup>2</sup> + | o + 1 are<br>b <sup>2</sup> + 1 – 3ab – 2a)<br>b <sup>2</sup> + 1 – 2ab – b – 2a) | (B) (2ab – b +<br>(D) (2a – 1 + l | 1) (4a <sup>2</sup> + b <sup>2</sup> – 4ab + 1 – 2a + b)<br>b) (4a <sup>2</sup> + 1 – 4a – b – 2ab) |         |
|------------|-------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|-----------------------------------|-----------------------------------------------------------------------------------------------------|---------|
|            | Answer: A                                                                                                   |                                                                                   |                                   |                                                                                                     |         |
|            | Solution: Multiplying (                                                                                     | 2a + b + 1) (4a <sup>2</sup> + b <sup>2</sup> +1 -                                | $2ab - b - 2a) = 8a^3 + b^3$      | <sup>3</sup> - 6ab + 1.                                                                             |         |
|            |                                                                                                             |                                                                                   |                                   |                                                                                                     | [2016]  |
| o          |                                                                                                             |                                                                                   |                                   |                                                                                                     |         |
| 6. If 'I', | 'b' and 'h' of a cuboid are                                                                                 | e increased, decreased a                                                          | ind increased by 1%, 3%           | % and 2% respectively, then the vol                                                                 | lume of |
| uie        |                                                                                                             |                                                                                   |                                   |                                                                                                     |         |
|            | (B) Decreases                                                                                               |                                                                                   |                                   |                                                                                                     |         |
|            | (C) Increases or decre                                                                                      | ases depending on origi                                                           | nal dimensions                    |                                                                                                     |         |
|            | (D) Can't be calculated                                                                                     | d with given data                                                                 |                                   |                                                                                                     |         |
|            |                                                                                                             | Ū                                                                                 |                                   |                                                                                                     |         |
|            | Answer: B                                                                                                   |                                                                                   |                                   |                                                                                                     |         |
|            | Solution: Volume of c                                                                                       | uboid = LBH                                                                       |                                   |                                                                                                     |         |
|            | New measurements,                                                                                           |                                                                                   |                                   |                                                                                                     |         |
|            | $l_1 = \frac{101}{100}L; b_1 = \frac{97}{100}B; h_1$                                                        | $=\frac{102}{100}H$                                                               |                                   |                                                                                                     |         |
|            | Hence, new volume =                                                                                         | 999294 LBH < LBH                                                                  |                                   |                                                                                                     |         |
|            | Therefore the volume                                                                                        | 1000000<br>decreases                                                              |                                   |                                                                                                     | [2012]  |
|            |                                                                                                             |                                                                                   |                                   |                                                                                                     | [2012]  |
|            |                                                                                                             |                                                                                   |                                   |                                                                                                     |         |
| 7. The     | area of the tringle forme                                                                                   | ed by $2x + 3y = 6$ and the                                                       | coordinate axes is                |                                                                                                     |         |
|            | (A) 3 sq. units                                                                                             | (B) 2 sq. units                                                                   | (C) 6 sq. units                   | (D) 5 sq. units                                                                                     |         |
|            |                                                                                                             |                                                                                   |                                   |                                                                                                     |         |
|            | Answer: C                                                                                                   |                                                                                   |                                   |                                                                                                     |         |
|            | Solution: Coordinate a                                                                                      | axes of $2x + 3y = 6$ are 6                                                       | sq. units                         |                                                                                                     | [0040]  |
|            |                                                                                                             |                                                                                   |                                   |                                                                                                     | [2013]  |
| 8 Eva      | uate $(2x - y + 3z) (4x^2)$                                                                                 | $+ y^{2} + 9z^{2} + 2xy + 3yz = 0$                                                | 6xz)                              |                                                                                                     |         |
| 0. 2. 44   | (A) $8x^3 - v^3 + 27z^3 - 18$                                                                               | $(B) 8x^3 - y^3 + 2$                                                              | $27z^3 + 18xvz$                   |                                                                                                     |         |
|            | (C) $8x^3 + y^3 + 27z^3 + 18$                                                                               | 8xyz (D) $8x^3 + y^3 - 2$                                                         | $27z^{3} + 18xyz$                 |                                                                                                     |         |
|            |                                                                                                             |                                                                                   |                                   |                                                                                                     |         |
|            | Answer: B                                                                                                   |                                                                                   |                                   |                                                                                                     |         |
|            | Solution: $(a - b + c)$ (a                                                                                  | $a^{2} + b^{2} c^{2} - ab - bc + ca) =$                                           | $a^{3} - b^{3} + c^{3} + 3abc$    |                                                                                                     |         |
|            | Here $a = 2x$ , $B = -y$ , $C$                                                                              | = 3z                                                                              |                                   |                                                                                                     |         |
|            | So, the given expression                                                                                    | on can be written as                                                              | 3                                 |                                                                                                     |         |
|            | $(2x)^{3} - y^{3} + (3z)^{3} + 3 (2z)^{3}$                                                                  | $(-y) (3z) = 8x^3 - y^3 + 2$                                                      | 7z° + 18xy z                      |                                                                                                     | [2014]  |
|            |                                                                                                             | 3                                                                                 |                                   |                                                                                                     |         |
| 9. Find    | the value of I, so that y                                                                                   | - 2p is a factor of $\frac{y^2}{4p^2} - 2$                                        | y + lp.                           |                                                                                                     |         |
|            | (A) 0                                                                                                       | (B) 1                                                                             | (C) 2                             | (D) 3                                                                                               |         |
|            |                                                                                                             |                                                                                   |                                   |                                                                                                     |         |
|            | Answer: C                                                                                                   |                                                                                   |                                   |                                                                                                     |         |
|            | <b>Solution:</b> Given $Y = 2$                                                                              | p is factor of – 2y + lp                                                          |                                   |                                                                                                     |         |
|            | At y=2p we get given p                                                                                      | olynomial equation to ze                                                          | ro.                               |                                                                                                     |         |

-2(2p) + lp = 0



| – 4p + lp                                                                   | = 0                                                                                                                             |                                                                                                |                                                                                                       |                           |
|-----------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------|---------------------------|
| 2p – 4p +                                                                   | ⊢ lp = 0                                                                                                                        |                                                                                                |                                                                                                       |                           |
| –2p + lp                                                                    | = 0                                                                                                                             |                                                                                                |                                                                                                       |                           |
| Lp = 2p                                                                     |                                                                                                                                 |                                                                                                |                                                                                                       |                           |
| L = 2.                                                                      |                                                                                                                                 |                                                                                                |                                                                                                       | [2015]                    |
| 10. If $x^4 + \frac{1}{4} = 4$                                              | 7, find the value of $x^3 + \frac{1}{2}$                                                                                        |                                                                                                |                                                                                                       |                           |
| (A) 7                                                                       | (B) 18                                                                                                                          | (C) 6                                                                                          | (D) 12                                                                                                |                           |
| Answer:                                                                     | В                                                                                                                               |                                                                                                |                                                                                                       |                           |
|                                                                             |                                                                                                                                 |                                                                                                |                                                                                                       | [2016]                    |
| 11. A box of choos<br>at random, from<br>Find the prob<br>(A) $\frac{5}{2}$ | colates contains 5 chocolates wi<br>om the box and eats it. Ajay then<br>ability that Amit and Ajay both c<br>(B) $\frac{4}{2}$ | th hard centers and 4<br>in takes a chocolate, s<br>hoose a chocolate wit<br>(C) $\frac{3}{2}$ | with soft centers. Amit takes a elected at random, from the box h a hard Centre.<br>(D) $\frac{5}{2}$ | chocolate, selected<br>k. |
| ( <sup>y</sup> y                                                            | ( <sup>y</sup> y                                                                                                                | ( ) 18                                                                                         | , , 18                                                                                                |                           |
| Answer:                                                                     | D                                                                                                                               |                                                                                                |                                                                                                       |                           |
| Solution                                                                    | : According to question                                                                                                         |                                                                                                |                                                                                                       |                           |
| Required                                                                    | I Probability = $5/9 \times 4/8 = 5/9 \times 3$                                                                                 | /2 = 5/18                                                                                      |                                                                                                       |                           |
|                                                                             |                                                                                                                                 |                                                                                                |                                                                                                       | [2012]                    |
| 12. Find the rema                                                           | ainder when $2x^3 - 9x^2 + x + 12a$                                                                                             | re divided by 2 + 3x.                                                                          |                                                                                                       |                           |
| (A) 0                                                                       | (B) 116/9                                                                                                                       | (C) –2                                                                                         | (D) 182/27                                                                                            |                           |
| Answer:                                                                     | D                                                                                                                               |                                                                                                |                                                                                                       |                           |
| Solution                                                                    | : Putting x = - 2/3 in the given p                                                                                              | olynomial, we get 182                                                                          | /27 as remainder.                                                                                     |                           |
|                                                                             |                                                                                                                                 |                                                                                                |                                                                                                       | [2013]                    |

13. In the given figure,  $\triangle$ ABC has sides AB = 7.5 cm, AC = 6.5 cm and BC = 7 cm. On the base BC a parallelogram DBCE of area same as that of  $\triangle$ ABC is constructed find the height DF of the parallelogram.



[2014]

| 14. The       | e number of dimensi<br>(A) 0                                         | ons, a point has<br>(B) 1                   | (C) 2                                                               | (D) 3                              |                |
|---------------|----------------------------------------------------------------------|---------------------------------------------|---------------------------------------------------------------------|------------------------------------|----------------|
|               | Answer: A                                                            |                                             |                                                                     |                                    |                |
|               | Solution: A point h                                                  | nas zero dimensions, a                      | s it can be marked anyv                                             | vhere.                             | [2015]         |
|               |                                                                      |                                             |                                                                     |                                    |                |
| 15. A s       | olid iron rectangular                                                | block of dimensions (2                      | $2.2 \text{ m} \times 1.2 \text{ m} \times 1 \text{ m}$ ) is a sub- | cast into a hollow cylindrical pip | be of internal |
| rad           | (A) 20 5 cm and thickr                                               | (P) 24 5 m                                  | gtn of the pipe. $(C)$ 22.4 m                                       | (D) 18.4 m                         |                |
|               | (A) 20.5 III                                                         | (B) 24.5 III                                | (0) 22.4 11                                                         | (D) 10.4 III                       |                |
|               | Answer: C                                                            |                                             |                                                                     |                                    |                |
|               | Solution: Dimension                                                  | ons of cuboidal block =                     | 2.2 m ×                                                             |                                    |                |
|               | = 220 CM×120CM                                                       | ×100CM                                      |                                                                     |                                    |                |
|               | ∴ Volume of cuboic                                                   | dal block = 220×120×10                      | 00cm3                                                               |                                    |                |
|               | Internal radius of th                                                | ne hollow cylinder (r) =                    | 35 m                                                                |                                    |                |
|               | Thickness of the ho                                                  | ollow cylinder = 5 cm                       |                                                                     |                                    |                |
|               | ∴ External radius o                                                  | f the hollow cylinder pip                   | be be h cm                                                          |                                    |                |
|               | ·· Volume of the ho                                                  | $100 \text{ pipe} = \pi (R2 - r2)$          | h                                                                   |                                    |                |
|               | $=\frac{32}{7}(402-352) \times$                                      | h cm3                                       |                                                                     |                                    |                |
|               | $=\frac{22}{7} \times (40-35) \times (40$                            | 0 + 35) × h cm3                             |                                                                     |                                    |                |
|               | $=\frac{22}{2} \times 5 \times 75 \times h cr$                       | m3                                          |                                                                     |                                    |                |
|               | <sup>7</sup><br>Here, volume of cu                                   | boidal block = Volume                       | of hollow cylinder                                                  |                                    |                |
|               | ∴ 220 × 120 × 100                                                    | $=\frac{22}{2} \times 5 \times 75 \times h$ |                                                                     |                                    |                |
|               | 220×120×100×7                                                        | 7                                           |                                                                     |                                    |                |
|               | $\therefore h = \frac{22 \times 8 \times 75}{22 \times 8 \times 75}$ | = 2240 cm = 22.40 cm                        |                                                                     |                                    |                |
|               | ∴ Length of the pipe                                                 | e = 22.4 m                                  |                                                                     |                                    | [0040]         |
|               |                                                                      |                                             |                                                                     |                                    | [2016]         |
| 16 In (       | niven figure ABCD a                                                  | and ABEE are two cycli                      | c quadrilaterals. If ZBCI                                           | D = 110° then ∠BEE =?              |                |
| 10.111        | A                                                                    |                                             |                                                                     |                                    |                |
|               |                                                                      | F                                           |                                                                     |                                    |                |
|               | (A) 55°                                                              | (B) 70°                                     | (C) 90°                                                             | (D) 110°                           |                |
|               | (, , , 00                                                            | (0) 10                                      | (0) 00                                                              |                                    |                |
|               | Answer: D                                                            |                                             |                                                                     |                                    |                |
|               | Solution: We know                                                    | w that opposite angles of                   | of cyclic quadrilateral ar                                          | e supplementary.                   |                |
|               | So, angle BAD = 7                                                    | 0 <sup>0</sup> .                            |                                                                     |                                    |                |
|               | Hence angle BEF =                                                    | = 110 <sup>°</sup>                          |                                                                     |                                    | [2012]         |
| 17. ln v      | which quadrant does                                                  | the point $P(x, y)$ lie if x                | (y < 0?)                                                            | (D)      /                         |                |
|               | (A) I or II                                                          | (B) II or IV                                | (C) I or III                                                        | (D) III or IV                      |                |
|               | Answer: B                                                            |                                             |                                                                     |                                    | [2013]         |
| 10 If ~       | $2 \perp \frac{1}{2} = 00$ then find                                 | d the value of $x^3 + \frac{1}{2}$          |                                                                     |                                    |                |
| TO. II $\chi$ | $\pm \frac{1}{x^2} = 90$ , then into                                 | $x = value \cup x^{2} + \frac{1}{x^{3}}.$   |                                                                     |                                    |                |
|               | (A) 890                                                              | (B) 970                                     | (C) 990                                                             | (U) 1110                           |                |
|               | Answer: B                                                            |                                             |                                                                     |                                    |                |

A Next. Gurukul



|          | <b>Solution:</b> $a^3 + b^3 = (a + b) (a^2 - ab + b^2)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                     |                                       |        |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------|---------------------------------------|--------|
|          | $x^{3} + (1/x^{3}) = (x + 1/x) (x^{2} - (x)(1/x) + 1/x^{2})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                     |                                       |        |
|          | $= (x + 1/x) (x^{2} + 1/x^{2} - 1) $                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                                     |                                       |        |
|          | Also $(1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 + (1 + 2)^2 +$ | 00.00                                               |                                       |        |
|          | (x + 1/x) = (x + 2(x)(1/x) + 1/x) = x + 1/x + 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 2 = 98 + 2= 100                                     |                                       |        |
|          | S0, $x + 1/x = 10$ .<br>Now $x^3 + (1/x^3) = (10) (98 - 1) (using 1) = 970$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                     |                                       |        |
|          | Now, $x + (1/x) = (10)(98 - 1)(using 1) = 970$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                     |                                       | [2014] |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                       | [2014] |
| 19. The  | points, whose abscissa and ordinate have diffe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | rent signs, lie in                                  | _ quadrants.                          |        |
|          | (A) I and II (B) II and III                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (C) I and III                                       | (D) II and IV                         |        |
|          | Answer: D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                     |                                       |        |
|          | Solution: Abscissa is the horizontal "X" and ord                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | dinate is the vertical "Y" v                        | values in a pair of coordinates (x,y) | and    |
|          | their signs are in all four quadrants are : $(x,y)$ , (-<br>signs then they will lie in 2 nd or 4 th quadrant                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | -x,y), (-x,- y), (x,-y). So, if                     | abscissa and ordinate have differe    | ent    |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                       | [2015] |
| 20. Wh   | ch of the following is a true statement?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                     |                                       | ,      |
|          | (A) Only a unique line can be drawn to pass thr                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ough a given point.                                 |                                       |        |
|          | (B) Infinitely many lines can be drawn to pass the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | hrough two given points.                            |                                       |        |
|          | (C) If two circles are equal, then their radii are e                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | equal.                                              |                                       |        |
|          | (D) A line has a definite length.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                                                     |                                       |        |
|          | Answer: C                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                     |                                       |        |
|          | <b>Solution:</b> If two circles are equal, then their rad                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | lii are equal.                                      |                                       |        |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                       | [2016] |
| 21 The   | value of $3\left[\frac{(a^2-b^2)^3+(b^2-c^2)^3+(c^2-a^2)^3}{(a^2-b^2)^3+(c^2-a^2)^3}\right] = ?$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                     |                                       |        |
| 21. 1110 | $(a-b)^{3}+(b-c)^{3}+(c-a)^{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                       |        |
|          | (A) $3(a + b) (b + c) (c + a)$ (B) $3(a - b) (b + c) (c + a)$ (D) 1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | – c) (c – a)                                        |                                       |        |
|          | (C) (a - b) (b - c) (c - a) (b) (b) (b - c) (c - a)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                                                     |                                       |        |
|          | Answer: B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                     |                                       |        |
|          | Solution: Let us assume, a=0; b=1; c=2; LHS =                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | = 6                                                 |                                       |        |
|          | On substituting the values in the given options,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | we have,                                            |                                       |        |
|          | 3(a-b) (b-c) (c-a) = 6                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                     |                                       | [2012] |
| 00 Tha   | degree of the polynomial $2y^2 + 12$ ( $\sqrt{2}y + \sqrt{12}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | $\overline{0}^{2}$ + 12 + 4 is                      |                                       |        |
| ZZ. The  | (A) 1 (B) 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (C) A                                               | (ח) 0                                 |        |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | (0) 4                                               |                                       |        |
|          | Answer: B                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                     |                                       | [2013] |
| 23. Sim  | plify: $\frac{2}{5} + \frac{1}{5} - \frac{3}{5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                     |                                       |        |
|          | (A) 3 (B) 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | (C) 4                                               | (D) 0                                 |        |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                       |        |
|          | Answer: D                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                     |                                       |        |
|          | Solution: Rationalizing the denominator, we ge                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | et                                                  |                                       |        |
|          | $2/(\sqrt{5} + \sqrt{3}) = 2(\sqrt{5} - \sqrt{3})/(\sqrt{5} + \sqrt{3})(\sqrt{5} - \sqrt{3})$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                     |                                       |        |
|          | $= \sqrt{5} - \sqrt{3} - \cdots - (1)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                     |                                       |        |
|          | Similarly we can find the value of the following a $1/(\sqrt{3} + \sqrt{2}) = \sqrt{3} + \sqrt{2} = -2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | as                                                  |                                       |        |
|          | And $3/(\sqrt{5} + \sqrt{2}) = \sqrt{5} - \sqrt{2} (3)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                     |                                       |        |
|          | Adding 1, 2 and 3, we get                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                     |                                       |        |
|          | $2/(\sqrt{5} + \sqrt{3} + 1/(\sqrt{3} + \sqrt{2}) + 3/(\sqrt{5} + \sqrt{2}) = \sqrt{5} - \sqrt{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | $3 + \sqrt{3} - \sqrt{2} - \sqrt{5} + \sqrt{2} = 0$ |                                       | [2014] |
|          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                     |                                       |        |









![](_page_7_Picture_0.jpeg)

**Solution:** A polynomial function of degree has n zeros, provided multiple zeros are counted more than once and Provided complex zeros are counted.

[2015]

35. The perimeter of a triangle is  $6p^2 - 4p + 9$  and two of its sides are  $p^2 - 2p + 1$  and  $3p^2 - 5p + 3$ . Find the third side of the triangle.

(A)  $8p^2 + 11p - 7$  (B)  $2p^2 + 3p + 5$  (C)  $3p^2 + 5p - 4$  (D)  $5p^2 - 5p + 9$ 

Answer: B Solution: Perimeter = A + B + C $6p^2 - 4p + 9 = p^2 - 2p + 1 + 3p^2 - 5p + 3 + c$  $C = 6p^2 - 4p + 9 - p^2 + 2p - 1 - 3p^2 + 5p - 3$  $C = 2p^2 + 3p + 5$ 

[2016]

36. The term containing the highest power of x in the polynomial f(x) is  $2x^4$ . Two of the roots of the equation f(x) = 0 are -1 and 2. Given that  $x^2 - 3x + 1$  is a quadratic factor of f(x), find the remainder when f(x) is divided by 2x - 1.

(A)  $1\frac{1}{8}$  (B) 2 (C) 9/8 (D) -1/3

#### Answer: C

**Solution:** Given -1 and 2 are roots of f(x). So, the polynomial will be  $(x + 1) (x - 2) = x^2 - x - 2$ Also  $x^2 - 3x + 1$  is a quadratic factor and  $2x^4$  is a highest power of f(x) So, the polynomial f(x) =  $2(x^2 - x - 2) (x^2 - 3x + 1) = 2x^4 - 8x^3 + 4x^2 + 10x - 4$ According to question it is divided by 2x - 1, so putting  $x = \frac{1}{2}$  we get the remainder as  $2(1/2)^4 - 8(1/2)^3 + 4(1/2)^2 + 10(1/2) - 4 = 9/8$ 

37. PQRS is a parallelogram. If X and Y are mid-points of PQ and SR respectively and diagonal SQ is joined the ratio ar(||<sup>gm</sup> XQRY ) : ar(∠QSR) =

$$P = \frac{X}{Y} = \frac{Q}{R}$$
(A) 1:4 (B) 2:1 (C) 1:2 (D) 1:1

Answer: B Solution: Area (||gm XQRY): Area (Triangle QSR) = b × h: ½ b × h = 2:1

[2013]

[2012]

38. In the given figure, ABCD is a rectangle. BD = BE,  $\angle$ BED = 40° and  $\angle$ EDA = 260°. Find  $\angle$ CDB.

![](_page_7_Figure_17.jpeg)

Answer: B

[2014]

(D) 45°

![](_page_8_Picture_1.jpeg)

![](_page_8_Figure_2.jpeg)

![](_page_9_Picture_1.jpeg)

44. Find the ratio of the shaded area to the area of the quadrilateral ABCD. D 20m -G 20 m 28 m (C)  $\sqrt{6}: 2 + \sqrt{6}$ (D)  $\sqrt{6}: 4 + \sqrt{6}$ (A)  $2 + \sqrt{6} : \sqrt{6}$ (B)  $3:2+\sqrt{6}$ Answer: C [2015] 45. Three statements are given below: (i) In a ||gm, the angle bisectors of two adjacent angles enclose a right angle. (ii) The angle bisectors of a ||gm form a rectangle. (iii) The triangle formed by joining the mid-points of the sides of an isosceles triangle is not necessarily an isosceles triangle. Which is true? (A) (i) only (B) (ii) only (C) (i) and (ii) only (D) (ii) and (iii) only Answer: C Solution: A rectangle is a parrallogram whose opposite sides are equal, and from a right angle. Hence the option (C) is well defined. [2016] 46. Solve for X:  $\frac{2^{X-3}}{8^{-X}} = \frac{32}{4^{(\frac{1}{2})x}}$ . (A)  $2\frac{1}{5}$ (D)  $\frac{8}{5}$ (B) 1<sup>1</sup>/<sub>-</sub> (C) 3 Answer: D **Solution:**  $2^{x-3}/8^{-x} = 32/4^{(1/2)x}$ So,  $2^{2x} \times 8^{x} = 2^{8}$  or  $2^{2x} \times 2^{3x} = 2^{8}$ Comparing both sides, we get X = 8/5[2012] 47. Simplify:  $\frac{1}{\sqrt{7}+\sqrt{6}}$  $(C)\frac{1}{4}$ (B)  $\frac{1}{2}$ (A) 0 (D) 1 Answer: A **Solution:**  $1 / (\sqrt{7} + \sqrt{6}) - 5 / (1 - \sqrt{6}) - \sqrt{7}$ =1/  $(\sqrt{7} + \sqrt{6}) \times (\sqrt{7} - \sqrt{6}) / (\sqrt{7} - \sqrt{6}) - 5 / (1 - \sqrt{6}) \times (1 + \sqrt{6}) / (1 + \sqrt{6}) - \sqrt{7}$  $= (\sqrt{7} - \sqrt{6}) / 7 - 6 - 5(1 + \sqrt{6}) / 1 - 6 - \sqrt{7}$  $=\sqrt{7} - \sqrt{6} + \sqrt{6} - \sqrt{7}$ = 0

[2013]

![](_page_10_Picture_1.jpeg)

48. The weight, in kg, of 50 students is given below.

| 40 | 45 | 55 | 62 | 50 | 51 | 56 | 69 | 61 | 36 |
|----|----|----|----|----|----|----|----|----|----|
| 60 | 56 | 69 | 38 | 35 | 63 | 57 | 50 | 57 | 48 |
| 40 | 63 | 53 | 64 | 47 | 42 | 56 | 51 | 42 | 60 |
| 55 | 39 | 64 | 57 | 64 | 44 | 66 | 35 | 59 | 59 |
| 73 | 62 | 49 | 63 | 37 | 63 | 54 | 72 | 44 | 60 |

Find the mean, median and mode respectively for the given data.

| (n)        | E0 00 1    |            | 001     |      | N      | - 6 4    |
|------------|------------|------------|---------|------|--------|----------|
| (( .)      | 5 3 4 2 KM | 56 K.      | h 3 k 1 | (1)) | NONE   | OT THESE |
| $( \cup )$ | 00.02 Kg,  | 00 Kg,     | UU Ng   | (0)  | 110110 |          |
| · ·        | <b>U</b> ' | <b>U</b> ' |         | · ·  |        |          |

#### Answer: D

**Solution:** Sum of numbers = 2695So, mean = 2695/50 = 53.9If we consider the exact value, we can say that no option is matching. If we round off then option C is correct.

[2014]

[2015]

49. The figure below is made up of a square ABCD and two rhombuses, ATCP and DRBV.

![](_page_10_Picture_11.jpeg)

Given that  $\angle BVD = 135^{\circ}$  and AT = BR, then find  $\angle PCT$  and  $\angle ABD$  respectively. (A)  $135^{\circ}$ ,  $135^{\circ}$  (B)  $135^{\circ}$ ,  $45^{\circ}$  (C)  $45^{\circ}$ ,  $135^{\circ}$  (D)  $45^{\circ}$ ,  $45^{\circ}$ 

### Answer: D

![](_page_10_Figure_14.jpeg)

184 999

(A) 
$$\frac{182}{99}$$
 (B)  $\frac{180}{999}$  (C)  $\frac{175}{99}$  (D)

Answer: A

![](_page_11_Picture_1.jpeg)

[2012]

### Solution:

| Let,             | Let,               |
|------------------|--------------------|
| a = 2.6 = 2.6666 | b = 0.82= 0.828282 |
| 10a = 26.666     | 100b = 82.828282   |
| (-)              | (-)                |
| 9a = 24          | 99b = 82           |
| a = 249          | b = 8299           |

Hence,

$$2.6-0.82 = \frac{24}{9} - \frac{82}{99}$$
$$= \frac{182}{99}$$

52. What is the area of the shaded part in the given figure?  $(\pi = \frac{22}{7})$ ?

![](_page_11_Figure_7.jpeg)

(A) 72 cm2

(B) 108 cm2

(C) 324 cm2

(D) 648 cm2

Answer: D

**Solution:** The area of shaded region =  $(pi \times r2)/2 + 36 \times 18) - (pi \times r2)/2$  (where r = 18 cm) So, area =  $36 \times 18 = 648$  sq cm

#### 53. Select the correct match.

- (A) When x = 5, y = 2.5 and when y = 5, x = 10, then x and y are inversely proportional.
- (B) When x = 10, y = 5 and when x = 20, y = 2.5, then xy = constant.
- (C) If x and y vary inversely, then on decreasing x, y will decrease in proportion.
- (D) If x and y vary directly, then on decreasing x, y will increase in proportion.

#### Answer: B

**Solution:** In first case Value of  $xy = 10 \times 5 = 50$ In second case Value of  $xy = 20 \times 2.5 = 50$ So, xy = constant

[2014]

[2013]

54. The numbers 7.478478... And 1.101001000100001...is

| (A) Rational and irrational respectively | (B) Both rational |
|------------------------------------------|-------------------|
| (C) Both irrationals                     | (D) none of these |

### Answer: A

**Solution:** 7.478478.... = 7.478, the decimal expansion is none terminating recurring then it is a rational number. 1.101001000100001... the decimal expansion is non terminating non-recurring then it is an irrational number

[2015]

55. Based on the given information, find the probability of people with age (60, 61 & 64) who can drive.

| Age (in years)            | Number of pers            | sons of different age who | can drive the car         |
|---------------------------|---------------------------|---------------------------|---------------------------|
| 60                        |                           | 16,090                    |                           |
| 61                        |                           | 11,490                    |                           |
| 62                        |                           | 8,012                     |                           |
| 63                        |                           | 5,448                     |                           |
| 64                        |                           | 3,607                     |                           |
| 65                        |                           | 2,320                     |                           |
| $(A) \frac{36071}{41490}$ | (B) $\frac{31187}{46967}$ | (C) $\frac{31232}{41149}$ | (D) $\frac{31232}{41609}$ |

#### Answer: B

**Solution:** Total persons of different age = 46967= A Total persons of age group 60, 61, 64 = 31187=B Probability = B/A = 31187/46967.

56. The base of an isosceles triangle is 4 cm and its area is 16 cm<sup>2</sup>. If one of the two equal sides of the triangle is k cm, the approximate value of k - 1.24 is \_\_\_\_\_\_.

| (A) 9 cm | (B) 7 cm | (C) 10 cm | (D) 8 cm |
|----------|----------|-----------|----------|
|          |          |           |          |

Answer: B

Solution: Considering here k = a

Area =  $\frac{1}{2}$  (b) (h) where h = sqrt( $a^2 - b^2 / 4$ ) So, 16 =  $\frac{1}{2}$  x 4 x sqrt( $a^2 - 16/4$ ) Or a = 8.24 So, a - 1.24 = 7 cm

57. The given figure is not drawn to scale. Find the values of  $\angle$ QPS and  $\angle$ TRQ respectively.

### [2016]

[2012]

Page 13 of 22

![](_page_12_Picture_17.jpeg)

x = -113 - 1 - 3 - 1 - 23 - 112 - 30 so x = -1 does indeed work.  $x^{3} + 3x^{2} - x - 3 = (x + 1)x^{2} + 2x - 3 = (x + 1)(x + 3)(x - 1)$  Putting this together with (4), we get the following. P(x) = (x + 2) (x + 1) (x + 3) (x - 1) the roots are x = -2, -1, -3, 1.

60. In the given figure AB || CD and EF || DQ. Determine ∠PDQ, ∠AED and ∠DEF respectively.

155 - 5 - 6 - 2 - 626 - 213 - 1 - 3. 0 Therefore the following is true.

![](_page_13_Figure_3.jpeg)

(C) 60°

(D) 90°

Calculate the area enclosed by the lines I, x = -3, y = -2 and y = -x + 2. (A) 16 sq. units (B) 19 sq. units (C) 20 sq. units

#### Answer: C

**Solution:** The area of the rectangle formed by I, x = -3, y = -2 and y-axis =  $3 \times 4 = 12$  sq units The area of right triangle formed by y-axis, y = -2 and  $y = -x + 2 = \frac{1}{2} x 4 x 4 = 8$  sq units So, the total area = 12 + 8 = 20 sq units.

59. Factories:  $x^4 + 5x^3 + 5x^2 - 5x - 6$ (A)  $(x^2 - 1) (x^2 + 6)$  (B)  $(x - 1) (x + 2)^3$  (C)  $(x^2 - 1) (x + 3) (x + 2)$ (D)  $(x - 1) (x + 2) (x^{2} + 3)$ Answer: C

**Solution:** P (x) = x4 + 5x3 + 5x2 - 5x - 6. [' II start with the standard guess that x = -2 is a root.

x4 + 5x3 + 5x2 - 5x - 6 = (x + 2)x3 + 3x2 - x - 3(4) Now let  $\frac{2}{3}$  break down the degree three thing.

58. Study the given graph and answer the following question.

(B) 75°

(A) 65°

![](_page_13_Figure_11.jpeg)

![](_page_13_Figure_12.jpeg)

(D) 22 sq. units

[2014]

Next, Gurukul

[2015]

![](_page_14_Picture_1.jpeg)

[2012]

#### Answer: D

**Solution:** Since, Triangle ABP is equilateral, implies  $\angle ABP = 60^{\circ}$ Similarly, Triangle BCQ is equilateral, implies  $\angle CBQ = 60^{\circ}$  $\angle ABC = 90^{\circ}$ , since, ABCD is a square. So,  $\angle PBC = 90^{\circ} - \angle ABP = 30^{\circ}$ Therefore,  $\angle PBQ = \angle PBC + \angle CBQ = 90^{\circ}$ 

62. The pie chart shows the grades attained by a group of students for a common test.

![](_page_14_Figure_5.jpeg)

If 240 students sat for the common test and those who obtained Grade D and E failed the test, how many students passed the test?

| (A) 42           | (B) 182  | (C) 215   | (D) 204 |
|------------------|----------|-----------|---------|
| (· ·) · <b>-</b> | (_) : •= | (0) = . 0 | (-) -•. |

Answer: D

**Solution:** Total number of students =240 Number of students appear in C= 25% of 240 = 60 Number of students appear in D = 10% of 240= 24 Number of students appear in E = 5% of 240 = 12 Number of students appear in A = 20% of 240 = 48 Percentage of students appear in B = 100- (25+10+5+20) =40 % So the number of students appear in B = 40% of 240 = 96 Number of students passed = (C+A+B) = 60 + 48 + 96 = 204

[2013]

63. In the given figure, the shape of a solid copper piece (made up of two pieces with dimensions as shown in the figure) is shown. The face ABCDEFA is the uniform cross-section. Assume that the angles at A, B, C, D, E and F are right angles. Calculate the volume of the piece.

![](_page_14_Figure_12.jpeg)

![](_page_15_Picture_1.jpeg)

[2013]

Next. Gurukul

68. Study the figure shown here (not drawn to scale), If ABG is a straight line, then find ∠ABH and reflex ∠ABC respectively.

![](_page_15_Figure_4.jpeg)

(C) 120°, 235°

(D) 110°, 215°

![](_page_16_Picture_1.jpeg)

| Answe                                                              | er: C                    |                           |                          |                                         |                     |                                      |        |
|--------------------------------------------------------------------|--------------------------|---------------------------|--------------------------|-----------------------------------------|---------------------|--------------------------------------|--------|
| Solutio                                                            | on: IAIIHB               |                           |                          |                                         |                     |                                      |        |
| So, ang                                                            | gle ABH = 12             | 20 <sup>0</sup> (angle at | the same s               | ide of trans                            | /ersal)             |                                      |        |
| Now, re                                                            | eflex angle A            | $ABC = 120^{0} +$         | · 115 <sup>0</sup> = 235 | 0                                       |                     |                                      |        |
|                                                                    |                          |                           |                          |                                         |                     |                                      | [2014] |
|                                                                    |                          | _                         |                          |                                         |                     |                                      |        |
| 69. The mean of                                                    | of a set of se           | ven number                | s is 81. If on           | e of the nui                            | nbers is discarde   | d, then the mean of the remaining    |        |
| number is /                                                        | 8. The value             | e of discarde             | d number is              |                                         | 0                   |                                      |        |
| (A) 98                                                             |                          | (B) 99                    |                          | (C) 10                                  | 0                   | (D) 101                              |        |
| ۵nswe                                                              | r• B                     |                           |                          |                                         |                     |                                      |        |
| Solutio                                                            | on: (7 x 81) -           | $-x = 6 \times 78$        |                          |                                         |                     |                                      |        |
| 567 - x                                                            | = 468                    |                           |                          |                                         |                     |                                      |        |
| X = 56                                                             | 7 – 468 = 99             |                           |                          |                                         |                     |                                      |        |
|                                                                    |                          |                           |                          |                                         |                     |                                      | [2015] |
|                                                                    |                          |                           |                          |                                         |                     |                                      |        |
| 70. Number of                                                      | players parti            | cipating in th            | ree differen             | t games in t                            | ive different scho  | ols.                                 |        |
| 90                                                                 | ) -                      |                           |                          |                                         |                     |                                      |        |
| 80                                                                 |                          |                           |                          |                                         |                     |                                      |        |
| st 70                                                              |                          |                           |                          |                                         |                     |                                      |        |
| A 60                                                               |                          |                           |                          |                                         |                     |                                      |        |
| Jo 1                                                               |                          |                           | _                        |                                         |                     |                                      |        |
| - and 30                                                           |                          |                           |                          |                                         |                     |                                      |        |
| $\begin{bmatrix} \mathbf{z} & 20 \\ \mathbf{z} & 10 \end{bmatrix}$ |                          |                           |                          |                                         |                     |                                      |        |
| 0                                                                  |                          |                           |                          |                                         |                     |                                      |        |
|                                                                    | School-1 Sc              | hool-2 School-3           | School-4 Sch             | nool-5                                  |                     |                                      |        |
|                                                                    | ■ Hock                   | kev □Basketball           | l ⊠Kho-Kho               |                                         |                     |                                      |        |
|                                                                    |                          | ,                         |                          |                                         |                     |                                      |        |
| Number of                                                          | players parti            | cipating in K             | ho-Kho from              | ו School-4 i                            | s what percent of   | number of players participating in I | nockey |
| from Schoo                                                         | ol-2?                    |                           |                          |                                         |                     |                                      |        |
| (A) 42                                                             |                          | (B) 48                    |                          | (C) 36                                  | 5                   | (D) 40                               |        |
| <b>A</b>                                                           |                          |                           |                          |                                         |                     |                                      |        |
| Answe                                                              | er: D<br>Difference      |                           | -0                       |                                         |                     |                                      |        |
| Borcon                                                             | 5n: Difference $50%$     | e = 60-30 = 0             | 50                       |                                         |                     |                                      |        |
| Percen                                                             | lage = 50%               | 01 00 =                   |                          |                                         |                     |                                      | [2016] |
|                                                                    |                          |                           |                          |                                         |                     |                                      | [2010] |
| 71 If product o                                                    | f abscissa ai            | nd ordinate c             | of a noint is i          | nositive the                            | n the naint lies in |                                      |        |
| (A) La                                                             | i abcoloca al<br>iadrant | (B) III a                 | uadrant                  | (C) IV                                  | quadrant            | (D) Both (A) and (B)                 |        |
| (7) 9                                                              | aaran                    | (2) q                     | Judurunt                 | (0)                                     | quadrant            |                                      |        |
| Answe                                                              | er: D                    |                           |                          |                                         |                     |                                      |        |
| Solutio                                                            | on:                      |                           |                          |                                         |                     |                                      |        |
|                                                                    | Quadrant                 | Abscissa                  | Ordinate                 | Product                                 |                     |                                      |        |
|                                                                    |                          | x                         | v                        | xv                                      |                     |                                      |        |
|                                                                    | ,<br>II                  | ~                         | y<br>,/                  | ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ |                     |                                      |        |
|                                                                    |                          | -x                        | У                        | -xy                                     |                     |                                      |        |
|                                                                    |                          | -X                        | -у                       | ху                                      |                     |                                      |        |

[2012]

IV

х

-у

-xy

![](_page_17_Figure_1.jpeg)

Next Education India Pvt. Ltd. All rights reserved.

Next.,Gurukul

#### Answer: B

**Solution:** Probability = Shaded area /Total area = {pi  $(3x)^2 - pi x^2$  ) / pi  $(3x)^2 = 8/9$ 

77. John is of the same age as Mohan. Ram is also of the same age as Mohan. State the Euclid's axiom that illustrates the relative ages of John and Ram.

(C) Third Axiom

(D) Fourth Axiom

(A) First Axiom

#### Answer: A

Solution: Things which are equal to the same thing are also equal to one another.

(B) Second Axiom

78. Direction (31-32): The pie chart below shows the number of fruits sold on a particular day at a fruit stall.

![](_page_18_Picture_8.jpeg)

The ratio of the number of mangoes sold to the number of apples sold is 6:5. What percentage of the total sales came from the sale of mangoes?

| (A) 20% | (B) 30% | (C) 45% | (D) 60% |
|---------|---------|---------|---------|
|---------|---------|---------|---------|

### Answer: B

80.

79. In the figure shown, square 2 is formed by joining the mid-points of square 1; square 3 is formed by joining the midpoints of square 2 and so on. In this way total five squares are drawn. The side of the square 1 is 'a' cm. What is the sum of perimeters of all the five squares?

| (A) $\frac{(4\sqrt{2}+1)a}{(\sqrt{2}+1)}$ | (B) $\frac{5}{6}a$                              | (C) $(7 + 3\sqrt{2})a$ | (D) None of these |        |
|-------------------------------------------|-------------------------------------------------|------------------------|-------------------|--------|
| Answer: C                                 |                                                 |                        |                   | [2016] |
| Find the missing value                    | e. $\frac{(13)^3 + 7^3}{(13)^2 + 7^2 - ?} = 20$ |                        |                   |        |
| (A) 6                                     | (B) 20                                          | (C) 91                 | (D) 19            |        |
| Answer: C                                 |                                                 |                        |                   |        |

Solution: Given equation is  $\frac{(13)^3 + (7)^3}{(13)^2 + (7)^2 - ?} = 20 \text{ or}, \frac{2197 + 343}{169 + 49 - ?} = 20 \text{ or}, \frac{2540}{218 - ?} = 20 \text{ or}, 127 = 218 - ? \text{ Therefore} = 91$ [2012]

81. The given question is followed by three statements. You have to study the question and all the three statements to decide whether any information provided in the statement(s) is/are redundant and can be dispensed with while answering the given question.

What is the marked price of the suitcase?

- I. When a discount of 15% is offered, the profit earned is 10.5%.
- II. The cost price of the suitcase is `1500.
- III.The marked price is 30% above the cost price.<br/>(A) I only(B) either I or III(C) Any one of the three(D) All I, II and III are required

#### Answer: B

![](_page_18_Picture_23.jpeg)

[2012]

[2014]

[2015]

Solution: Using I and II the required answer can be obtained. Also using II and III we can get the result required. [2014] 82. If the total number of fruits sold were 200. Then how many bananas were sold on that day? (A) 20 (B) 30 (C) 32 (D) 48 Answer: C [2015] 83. Two men start from points A and B respectively, 42 km apart. One walks from A to B at 4 km/hr. and another walks from B to A at a certain uniform speed they meet each other after 6 hours. Find the speed of the second man. (C) 7 km/hr. (A) 3km/hr. (B) 5 km/hr. (D) 8 km/hr. Answer: A **Solution:** Time taken to cover 42 km for A = 42/4 = 10.5 hrs. So in 6hrs distance covered by A would be 24 km. For B distance covered would be 42 - 24 = 18Speed of B = 18/6 = 3km/hr. [2016]

84. The students in a college were asked to vote for their favorite subject. The pie chart represents the number of votes for each subject. Mathematics obtained 25 more votes than Chemistry. Calculate the number of students who took part in the survey.

![](_page_19_Figure_3.jpeg)

**Solution:** As per the given conditions, each sector of the circle represents the number of students, which definitely has to be a natural number.

This means,  $\frac{\text{Angle of Sector}}{360^{\circ}} = N$ ; N=Set of natural numbers so; the number students who have Chemistry as favorite subject are,  $\frac{105^{\circ}}{360^{\circ}} = \frac{7}{24}$  of the total number of students. From the given options, only 600 are perfectly divisible by 24. Therefore, the total number students surveyed are 600.

[2012]

85. The area of the triangle formed by the points A (2, 0), B (6, 0) and C (4, 6) is\_\_\_\_\_. (A) 24 sq. units (B) 12 sq. units (C) 10 sq. units (D) None of these

### Answer: B

**Solution:** Applying the formula Area of  $\triangle ABC = 1/2[(x_2 - x_1) (y_3 - y_1) - (x_3 - x_1) (y_2 - y_1)]$ Area =  $\frac{1}{2} \{(4) (6) - (2) (0)\} = 24/2 = 12$  sq units

[2014]

![](_page_19_Picture_13.jpeg)

|                                                                                                                                                                                                                                                                                                                                         | a graph of the linear agu                                                                                          | ation w appaged throw                                    | ab the point                                            |                                                               |  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------|---------------------------------------------------------|---------------------------------------------------------------|--|
| 00. 110                                                                                                                                                                                                                                                                                                                                 | (A) $\left(\frac{3}{2}, -\frac{3}{2}\right)$                                                                       | (B) $(0, \frac{3}{2})$                                   | (C) (1, 1)                                              | (D) $\left(-\frac{1}{2},\frac{1}{2}\right)$                   |  |
|                                                                                                                                                                                                                                                                                                                                         | <b>Answer:</b> C<br><b>Solution:</b> As the equation (1, 1) is the only point f                                    | tion of line is Y = X which<br>from the options which sa | n passes through origin a atisfies the equation $Y = 1$ | nd values of X & Y are equal, then<br>X.<br>[2015]            |  |
|                                                                                                                                                                                                                                                                                                                                         |                                                                                                                    |                                                          |                                                         |                                                               |  |
| 87. Sic                                                                                                                                                                                                                                                                                                                                 | les of a tringle are in the<br>(A) 226 cm <sup>2</sup>                                                             | ratio 13:14:15 and its pe<br>(B) 412 cm <sup>2</sup>     | erimeter is 84 cm. Find its<br>(C) 162 cm <sup>2</sup>  | s area.<br>(D) 336 cm <sup>2</sup>                            |  |
|                                                                                                                                                                                                                                                                                                                                         | Answer: D<br>Solution: Side A =<br>Side B =<br>Side C =<br>2s = A + B + C = 84<br>Area = = = = 336 cm <sup>2</sup> |                                                          |                                                         |                                                               |  |
|                                                                                                                                                                                                                                                                                                                                         |                                                                                                                    |                                                          |                                                         | [2016]                                                        |  |
| 88. A c                                                                                                                                                                                                                                                                                                                                 | cuboidal metal block of d                                                                                          | imensions 20 cm × 16 cr<br>n                             | m × 12 cm weighs 6 kg. F                                | Find the weight of block of the same metal                    |  |
|                                                                                                                                                                                                                                                                                                                                         | (A) 3 kg                                                                                                           | (B) 8 kg                                                 | (C) 7 kg                                                | (D) 1 kg                                                      |  |
| Answer: D<br>Solution: Given dimensions of the 6 kg block is $20 \times 16 \times 12$ cm <sup>3</sup> = 3840 cm <sup>3</sup><br>Weight per cubic cm = $\frac{6}{3860}$ kg given dimensions of the 2nd block is $10 \times 8 \times 8 = 640$ cm <sup>3</sup><br>Therefore, weight of the 2nd block is $\frac{6}{3840} \times 640 = 1$ kg |                                                                                                                    |                                                          |                                                         |                                                               |  |
| 89. In t<br>∠F                                                                                                                                                                                                                                                                                                                          | the given figure, AB    CI<br>EG respectively.<br>$A \qquad B$<br>$C \qquad D$<br>$E \qquad F$                     | D    EF.CE is joined and p                               | produced to G. If ∠BAC =                                | = 130°, $\angle ACE = 140^\circ$ , then find $\angle DCE$ and |  |
|                                                                                                                                                                                                                                                                                                                                         | (A) 50°, 130°<br>Answer: B                                                                                         | (B) 90°, 90°                                             | (C) 140°, 40°                                           | (D) 45°, 135°                                                 |  |

Solution: Angle ACD =  $180^{\circ} - 130^{\circ} = 50^{\circ}$ Also Angle ECD =  $240^{\circ} - 50^{\circ} = 90^{\circ}$ Angle FEG =  $90^{\circ}$  (Corresponding angle)

**Class 9th Mathematical Reasoning** 

[2014]

[2015]

🛄 Next. Gurukul

90. If the perpendicular distance of a point P from the x-axis is 5 units and the foot of the perpendicular lies on the negative direction of x-axis, then the point P has

(A) Abscissa = -5 (B) Ordinate = 5 (C) Ordinate = -5 (D) Ordinate = 5 or -5.

Next Education India Pvt. Ltd. All rights reserved.

![](_page_21_Figure_1.jpeg)

BOC = 240, Total 360 - 240 = 120.

[2016]

Next, Gurukul<sup>®</sup>