General Instructions:

1. All questions are compulsory
2. Please check that this question paper contains 29 questions
3. Question 1-4 in Section A carrying 1 mark each
4. Questions 5-12 in Section B carrying 2 marks each
5. Questions 13 - $\mathbf{2 3}$ in Section C carrying 4 marks each
6. Questions $\mathbf{2 4} \mathbf{- 2 9}$ in Section D carrying 6 marks each

SECTION - A

1. If for any 2×2 square matrix $A, A(\operatorname{adj} A)=\left[\begin{array}{ll}8 & 0 \\ 0 & 8\end{array}\right]$, then write the value of $I A I$.
2. Determine the value of ' k ' for which the following function is continuous at $x=3$:

$$
f(x)=\left\{\begin{array}{c}
\frac{(x+3)^{2}-36}{x-3}, x^{1} 3 \\
k, x=3
\end{array}\right.
$$

3. Find: $\int \frac{\sin ^{2} x-\cos ^{2} x}{\sin x \cos x} d x$
4. Find the distance between the planes $2 x-y+2 z=5$ and $5 x-2.5 y+5 z=20$.

SECTION - B

5. If A is a skew-symmetric matrix of order 3 , then prove that $\operatorname{det} A=0$.
6. Find the value of c in Rolle's theorem for the function $f(x)=x^{3}-3 x$ in $[-\sqrt{3}, 0]$.
7. The volume of a cube is increasing at the rate of $9 \mathrm{~cm} 3 / \mathrm{s}$. How fast its surface is are increasing when the length of an edge is 10 cm ?
8. Show that the function $f(x)=x^{3}-3 x^{2}+6 x-100$ is increasing on R.
9. The x-coordinate of a point on the line joining the points $P(2,2,1)$ and $Q(5,1,-2)$ is 4 . Find its z-coordinate.
10. A die, whose faces are marked $1,2.3$ in red and $4,5,6$ in green, are tossed. Let A be the event" number obtained is even" and B be the event "Number obtained is red." Find if A and B are independent event.
11. Two tailors, A and B earn 300 and 400 per day respectively. A can stitch 6 shirts and 4 pairs of trousers while B can stitch 10 shirts and 4 pairs of trousers per day. To find how many days should 10 shirts and if it is desired to produce at least 60 shirts and 32 pairs of trousers at a minimum labour cost, formulate this as an LPP.
12. Find $\int \frac{d x}{5-8 x-x^{2}}$

SECTION - C

13. If $\tan ^{-1} \frac{x-3}{x-4}+\tan ^{-1} \frac{x+3}{x+4}=\frac{\pi}{4}$, then find the value of x
14. Using properties of determinants, prove that
$\left|\begin{array}{cll}a^{2}+2 a & 2 a+1 & 1 \\ 2 a+1 & a+2 & 1 \\ 3 & 3 & 1\end{array}\right|=(a-1)^{3}$
OR
Find matrix A such that
$\left(\begin{array}{cc}2 & -1 \\ 1 & 0 \\ -3 & 4\end{array}\right) A=\left(\begin{array}{cc}-1 & -8 \\ 1 & -2 \\ - & 22\end{array}\right)$
15. If $\mathrm{x}^{\mathrm{y}}+\mathrm{y}^{\mathrm{x}}=\mathrm{a}^{\mathrm{b}}$, then find $\frac{d y}{d x}$

OR
If $\mathrm{e}^{y}(\mathrm{x}+1)=1$, then show that $\frac{d^{2} y}{d x^{2}}=\left(\frac{d y}{d x}\right)^{2}$
16. Find $\int \frac{\cos \theta}{\left(4+\sin ^{2} \theta\right)\left(5-4 \cos ^{2} \theta\right)} \mathrm{d} \theta$
17. Find $\int_{0}^{n} \frac{x \tan x}{\sec x+\tan x} d x$

OR

Evaluate $\int_{1}^{4}\{x-1+x-2+x-4\} d x$
18. Solve the differential equation $\left(\tan ^{-1} x-y\right) d x=\left(1+x^{2}\right) d y$
19. Show that the points A, B, C with position vectors $2 \hat{\imath}-\hat{\jmath}+k, \hat{\imath}-3 \hat{\jmath}-5 k$ and $3 \hat{\imath}-4 j-4 k$ respectively are the vertices of a right-angled triangle, Hence find the area of the triangle
20. Find the value λ, if four points with position vectors $3 \hat{\imath}+6 \hat{\jmath}+9 k, \hat{\imath}+2 \hat{\jmath}+3 k, 2 \hat{\imath}+3 \hat{\jmath}+k$ and $4 \hat{\imath}+6 \hat{\jmath}+\lambda k$ are coplanar.
21. There are 4 cards numbered 1,3,5 and 7 one number on one card. Two cards are drawn at random without replacement. Let X denotes the sum of the numbers on the two cards. Find the mean and variances of X.
22. Of the students in a school, it is known that 30\% have 100\% attendance and 70% students are irregular. Previous year results report that 70\% of all students who have 100\% attendance attain a grade and 10\% irregular students attain A grade in their annual examination. At the end of the year one student is chosen at random from the school and he was found to have an A grade. What is the student has 100\% attendance? Is regularly required only in school? Justify your answer.
23. Maximize $z=x+2 y$ Subject to the constraints
$x+2 y \geq 100$
$2 x-y \leq 0$
$2 x-y \leq 200$
$x, y \geq 0 \quad$ Solve the above LPP graphically

SECTION - D

24. Determine the product $\left[\begin{array}{ccc}-4 & 4 & 4 \\ -7 & 1 & 3 \\ 5 & -3 & -1\end{array}\right]\left[\begin{array}{ccc}1 & -1 & 1 \\ 1 & -2 & -2 \\ 2 & 1 & 3\end{array}\right]$ and use it to solve the system of equations $X-y+z=4, x-2 y-2 x=9,2 x+y+3 z=1$
25. Consider $\mathrm{f}: \mathrm{R}-\left\{\begin{array}{r}4 \\ 3\end{array}\right\} \rightarrow R-\left\{\begin{array}{l}4 \\ 3\end{array}\right\}$ given by $\mathrm{f}(\mathrm{x})=\frac{4 x+3}{3 x+4}$ show that f is bijective.

Find the inverse of f and hence find $f^{-1}(0)$ and x such that $f^{-1}(x)=2$
OR
Let $A=Q \times Q$ and let * be a binary operation on A defined by $(a, b) \times(c, d)=(a c, b+a d)$ for $(a, b),(c, d) \in$ A. Determine whether * is Commutative and associative. Then, with respect to * on A
(i) Find the identify element in A.
(ii) Find the invertible elements of A.
26. Show that the surface area of a closed cuboid with square base and given volume is minimum when it is a cube.
27. Using the method of integration, find the area of the triangle $A B C$, coordinates of whose vertices are $A(4,1)$, $B(6,6)$ and $C(8,4)$.

OR

Find the area enclosed between the parabola $4 y=3 x^{2}$ and the straight line $3 x-2 y+12=0$.
28. Find the particular solution of the differential equation $(x-y) \frac{d y}{d x}=(x+2 y)$. given that $y=0$ when $x=1$
29. Find the coordinates of the point where the line through the point $(3,-4,-5)$ and $(2,-3,1)$ crosses the plane determined by the points $(1,2,3),(4,2,-3)$ and $(0,4,3)$

OR
A variable plane which remains at a constant distance $3 p$ from the origin cuts the coordinate axes at
A, B, C. Show that the locus of the centroid of triangle $A B C$ is $\frac{1}{x^{2}}+\frac{1}{y^{2}}+\frac{1}{z^{2}}=\frac{1}{P^{2}}$

